Voltage-gated Na+ channel β1B: a secreted cell adhesion molecule involved in human epilepsy.

نویسندگان

  • Gustavo A Patino
  • William J Brackenbury
  • Yangyang Bao
  • Luis F Lopez-Santiago
  • Heather A O'Malley
  • Chunling Chen
  • Jeffrey D Calhoun
  • Ron G Lafrenière
  • Patrick Cossette
  • Guy A Rouleau
  • Lori L Isom
چکیده

Scn1b-null mice have a severe neurological and cardiac phenotype. Human mutations in SCN1B result in epilepsy and cardiac arrhythmia. SCN1B is expressed as two developmentally regulated splice variants, β1 and β1B, that are each expressed in brain and heart in rodents and humans. Here, we studied the structure and function of β1B and investigated a novel human SCN1B epilepsy-related mutation (p.G257R) unique to β1B. We show that wild-type β1B is not a transmembrane protein, but a soluble protein expressed predominantly during embryonic development that promotes neurite outgrowth. Association of β1B with voltage-gated Na+ channels Na(v)1.1 or Na(v)1.3 is not detectable by immunoprecipitation and β1B does not affect Na(v)1.3 cell surface expression as measured by [(3)H]saxitoxin binding. However, β1B coexpression results in subtle alteration of Na(v)1.3 currents in transfected cells, suggesting that β1B may modulate Na+ current in brain. Similar to the previously characterized p.R125C mutation, p.G257R results in intracellular retention of β1B, generating a functional null allele. In contrast, two other SCN1B mutations associated with epilepsy, p.C121W and p.R85H, are expressed at the cell surface. We propose that β1B p.G257R may contribute to epilepsy through a mechanism that includes intracellular retention resulting in aberrant neuronal pathfinding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Na+ Channel β Subunits: Overachievers of the Ion Channel Family

Voltage-gated Na(+) channels (VGSCs) in mammals contain a pore-forming α subunit and one or more β subunits. There are five mammalian β subunits in total: β1, β1B, β2, β3, and β4, encoded by four genes: SCN1B-SCN4B. With the exception of the SCN1B splice variant, β1B, the β subunits are type I topology transmembrane proteins. In contrast, β1B lacks a transmembrane domain and is a secreted prote...

متن کامل

Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells.

The axon initial segment (AIS) of pyramidal cells is a critical region for the generation of action potentials and for the control of pyramidal cell activity. Here we show that Na+ and K+ voltage-gated channels, together with other molecules involved in the localization of ion channels, are distributed asymmetrically in the AIS of pyramidal cells situated in the human temporal neocortex. There ...

متن کامل

Structure-based site-directed photo-crosslinking analyses of multimeric cell-adhesive interactions of voltage-gated sodium channel β subunits

The β1, β2, and β4 subunits of voltage-gated sodium channels reportedly function as cell adhesion molecules. The present crystallographic analysis of the β4 extracellular domain revealed an antiparallel arrangement of the β4 molecules in the crystal lattice. The interface between the two antiparallel β4 molecules is asymmetric, and results in a multimeric assembly. Structure-based mutagenesis a...

متن کامل

Cell adhesion molecule L1 contributes to neuronal excitability regulating the function of voltage-gated sodium channels

* present address: Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London WC1N 3BG, UK § present address: Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY, USA ^ present address: Department of Pharmacy, University of Napoli Federico II, Napoli, Italy ° present address: Cognitive Neuroscience, Sensorimoto...

متن کامل

Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom

Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 41  شماره 

صفحات  -

تاریخ انتشار 2011